<  previous news

Public swimming pool with biofilter in Neustadt (Dosse)

next news  >

International Covid-19 dialogs held with WSSPs

14.05.2021

"Am Palmsberg" WWTP (40,000 p.e.) Denitrification stage optimized and energy saved

The Abwasserverband Saale-Lauer, operator of the wastewater treatment plant built in the late 1970s (city of Bad Neustadt an der Saale, Lower Franconia), is optimizing the wastewater treatment plant and adapting it to the stricter environmental requirements. Priority has been also given to the stability of the cleaning performance and energy efficiency.

AKUT was commissioned in 2018 to identify expansion and optimization options for the wastewater treatment plant. Several modules were developed, of which the fluidic optimization of the denitrification basin was practically and successfully completed at the end of 2020.

Among other measures, the inlet and the circulation of the denitrification stage had to be hydraulically optimized. In the medium term, an expansion of the treatment plant is also planned, which is increasingly reaching its loading limits. Reconstructions from previous years were subjected to a weak-point analysis, which aimed at stabilizing the effluent quality and achieving a more energy-efficient operation.

The denitrification stage was found to operate below optimum cleaning performance.  The cause was identified as inadequate hydraulics in the inlet area. Furthermore, sludge accumulation occurred in the basin due to unfavourable flow guidance and non-optimal agitators.

In 2020, the closure of the old distribution channel and the adaptation of the threshold structures were implemented in accordance with the hydraulic calculation carried out by AKUT, so that the entire water flow and the entire return sludge is now routed through the denitrification stage.

In order to improve the circulation behaviour of the wastewater and to avoid the previously observed sludge deposits on the basin bottom in the future, concrete elements calculated and manufactured for the application were embedded in the longitudinally divided structure and the existing corners in the basin were optimally designed.

The newly installed, slow-running propeller agitator, the thrust of which is adapted to the different recirculation and sludge return feeds as required, results in energy savings of 50% compared with the previous agitators.

more >